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ABSTRACT

Automatic exploit generation is an open challenge. Existing so-
lutions usually explore in depth the crashing paths, i.e., paths taken
by proof-of-concept (PoC) inputs triggering vulnerabilities, and
generate exploits when exploitable states are found along the paths.
However, exploitable states do not always exist in crashing paths.
Moreover, existing solutions heavily rely on symbolic execution
and are not scalable in path exploration and exploit generation. In
addition, few solutions could exploit heap-based vulnerabilities.

In this paper, we propose a new solution Revery to search for
exploitable states in paths diverging from crashing paths, and gen-
erate control-flow hijacking exploits for heap-based vulnerabilities.
It adopts three novel techniques: (1) a layout-contributor digraph to
characterize a vulnerability’s memory layout and its contributor
instructions; (2) a layout-oriented fuzzing solution to explore diverg-
ing paths, which have similar memory layouts as the crashing paths,
in order to search more exploitable states and generate correspond-
ing diverging inputs; (3) a control-flow stitching solution to stitch
crashing paths and diverging paths together, and synthesize EXP
inputs able to trigger both vulnerabilities and exploitable states.

We have developed a prototype of Revery based on the binary
analysis engine angr [31], and evaluated it on a set of 19 real world
CTF (capture the flag) programs. Experiment results showed that
it could generate exploits for 9 (47%) of them, and generate EXP
inputs able to trigger exploitable states for another 5 (26%) of them.
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1 INTRODUCTION

Due to the success of automated vulnerability discovery solu-
tions (e.g., fuzzing), more and more vulnerabilities are found in real
world applications, together with proof-of-concept (PoC) inputs.
For example, Google’s OSS-Fuzz platform [28] adopts several state-
of-the-art fuzzers to continuously test open source applications,
and has found over 1000 bugs in 5 months [4]. As a result, more and
more human resources are spent on assessing vulnerabilities, e.g.,
identifying root causes and fixing them. It thus calls for solutions
to automatically assess the severity and priority of vulnerabilities.

Vulnerability assessment, especially exploitability assessment, is
important for both defenders and attackers. Attackers could isolate
exploitable vulnerabilities and write exploits to launch attacks. On
the other hand, defenders could prioritize exploitable vulnerabilities
to fix first, and allocate resources accordingly. Moreover, defenders
could learn from the exploits to generate IDS (Intrusion Detection
System) signatures, to block future attacks.

A straightforward way to assess a vulnerability is analyzing the
program state at the crashing point, i.e., the instruction leading to
program crashes or security violations, which could be caught by
a sanitizer (e.g., AddressSanitizer [29]). For example, Microsoft’s
lexploitable tool [3] inspects all instructions in the crashing
point’s basic block, and searches for known exploitable patterns, e.g.,
control transfer instructions with tainted targets. HCSIFTER [17]
takes an extra step to recover the data corrupted by heap over-
flow, enabling the program to execute more code after the crashing
point, and thus provides more reliable assessments. However, these
solutions rely on heuristics to determine the exploitability of vul-
nerabilities, and thus are inaccurate sometimes. Moreover, they
could not provide exploit inputs to prove the exploitability.

The ultimate way to assess the exploitability of a vulnerability is
generating a working exploit, either by human or by machine, e.g., as
demonstrated in Cyber Grand Challenge (CGC [14]). Sean Heelan
proposed a prototype [18] in his thesis, using dynamic analysis and
symbolic execution to generate exploits for classic buffer overflow
vulnerabilities. AEG [8] and Mayhem [13] provide end-to-end sys-
tems to discover vulnerabilities and automatically generate exploits
when possible, for source code and binary respectively. Q [26] and
CRAX [20] could generate exploits for binaries given PoC inputs.
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These automatic exploit generation (AEG) solutions share a sim-
ilar workflow. In general, they will first analyze vulnerabilities in
detail in the crashing paths using dynamic analysis, then search for
exploitable states in crashing paths, then utilize symbolic execution
to collect the path reachability constraints, vulnerability trigger-
ing constraints and exploit construction constraints respectively,
and finally solve these constraints using SMT solvers and generate
exploit inputs. However, these solutions could only solve a small
number of problems. For example, machines developed in CGC
could only solve 26 out of 82 challenge programs in the Final Event.

There are several challenges need to be addressed:

Challenge 1: Exploit derivability issue. As pointed in [15, 36], once
memory corruption vulnerabilities are triggered, the victim pro-
gram’s state machine turns into a weird (state) machine. Exploitation
is actually a process of programming the weird machine to perform
unintended behavior. It is extremely important to set up the initial
state of this weird machine in order to exploit it.

However, PoC inputs could corrupt some data and lead weird
machines to non-exploitable initial states. For example, the pro-
gram may exit soon after the crashing point due to some sanity
checks. So, AEG solutions have to search for exploitable states not
only in crashing paths taken by PoC inputs, but also in alternative
diverging paths. This is known as exploit derivability, one of the
core challenges of exploitation [36]. Few AEG solutions have paid
attentions to this issue.

Challenge 2: Symbolic execution bottleneck. Existing solutions
heavily rely on symbolic execution to explore program paths (e.g.,
for vulnerability discovery), or perform reasoning (e.g., for test case
and exploit generation). AEG [8] and Mayhem [13] utilize symbolic
execution to explore paths reachable from the vulnerability point
and search for exploitable states, able to mitigate the aforemen-
tioned exploit derivability issue. However, symbolic execution has
scalability issues and performs poorly in exploit generation.

First, it faces the path explosion issue when exploring paths, and
consumes too many resources even when analyzing only one path.
Second, it gets blind to certain exploitable states after concretizing
some values. For example, it has to concretize symbolic arguments
of memory allocations and symbolic indexes of memory access
operations in a path, in order to model the memory states and
enable exploring following sub-paths. But the concretized values
could lead to non-exploitable memory states.

Challenge 3: Exploiting Heap-based Vulnerability. Few existing so-
lutions could generate exploits for heap-based vulnerabilities. First,
heap management functions are too complicated for program anal-
ysis techniques to analyze. For example, the single file malloc.c in
the library glibc has more than 5000 lines of code. Second, heap
management functions have deployed several sanity checks, which
could detect the heap corruption at certain checkpoints.

Our solution. In this paper, we focus on the exploitability assess-
ment of heap-based vulnerabilities, given PoC inputs. We present
a framework Revery, able to search for exploitable states in not
only crashing paths but also diverging paths and generate working
control-flow hijacking exploits when possible.

First, it analyzes the vulnerabilities using dynamic analysis. Sim-
ilar to existing AEG solutions, Revery also collects some runtime

information in the crashing path, including taint attributes of vari-
ables. In addition, it inspects corrupted memory objects (denoted
as exceptional objects), and objects that can be used to locate the
exceptional objects. Moreover, it retrieves layout-contributor in-
structions from the path, which create these objects and set up the
point-to relationship among them. Based on these instructions and
objects, Revery creates a layout-contributor digraph to characterize
the vulnerability’s memory state and contributors.

Then it searches alternative diverging paths for exploitable states.
Revery utilizes a novel layout-oriented fuzzing solution rather than
symbolic execution to explore diverging paths. Similar to directed
fuzzing [10], Revery also drives a fuzzer to explore paths close to
specific targets, i.e., the crashing paths.

However, Revery does not aim at matching the exact crashing
path or triggering the vulnerability during fuzzing. Instead, it ig-
nores most of the instructions in the crashing path, but aims at
hitting the aforementioned layout-contributor instructions, which
could yield a similar memory layout as the vulnerability. There-
fore, the fuzzer could explore many diverging paths, and has a
better chance to find exploitable states, while sticking around the
vulnerable memory states.

Finally, Revery tries to synthesize new EXP inputs to trigger
both the exploitable states in diverging paths and vulnerabilities in
crashing paths. It employs a novel control-flow stitching solution
to stitch the diverging paths and crashing paths together, and then
utilizes a lightweight symbolic execution to generate EXP inputs.

In certain cases, Revery is able to directly generate working
exploits. But it is not guaranteed, due to the presence of compli-
cated defense mechanisms, or the requirement of making dynamic
decisions during exploitation, or other challenges which are out of
the scope of this paper. It is worth noting that, even in cases where
Revery fails to generate working exploits, Revery could provide
EXP inputs to experts and help them write exploits.

Results. We have built a prototype of Revery based on the binary
analysis engine angr [31], and evaluated it on 19 real world CTF
(Capture The Flag) programs. It demonstrated that Revery is effec-
tive in triggering exploitable states, and could generate working
exploits for a big portion of them. More specifically, Revery could
generate exploits for 9 (47%) out of 19 programs, while existing open
source AEG solutions could not solve any of them. Furthermore, it
could trigger exploitable states for another 5 (26%) of them.

In summary, we have made the following contributions:

e We proposed an automated solution Revery able to transfer PoC
inputs into EXP inputs, which could trigger vulnerabilities and
enter exploitable states. It could also directly generate working
exploits in certain cases.

e We proposed a layout-contributor digraph data structure, to char-
acterize vulnerabilities’ memory layouts and their contributor
instructions, enabling many exploit-related analysis.

e We proposed a novel layout-oriented fuzzing solution, to search
for exploitable states in diverging paths, without symbolic exe-
cution.

e We proposed a novel control-flow stitching solution, to stitch
crashing paths and diverging paths together and synthesize EXP
inputs with a lightweight symbolic execution.

e We have implemented a prototype of Revery, and demonstrated
its effectiveness in real world CTF programs.



1 struct Typel { char[8] data;
2 struct Type2 { int status;
3 int (*handler) (const int*) = ..;

4. struct{Typel* objl; Type* obj2;} gvar = {};
5. int foo(){
6

7

8

gvar.objl = new Typel;

gvar.obj2 = new Type2;
. gvar.obj2->init(); // resulting different statuses
9. if( )
10.
11. if(gvar.obj2->status) // stitching point
12. res = * ;
13. else // stitching point
14. *gvar.obj2->ptr = read_int(); // exploitable point
15. handler (gvar.obj2->ptr); // hijacking point
16. return res;
17. }

int* ptr; void init(){..};
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Figure 1: An example heap overflow. The vulnerability at line 10 could overwrite the following object, i.e., obj2. PoC inputs
would crash at line 12 and enter a non-exploitable state. Successful exploits will trigger the exploitable state at line 14.
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Figure 2: Overview of Revery. It first analyzes the vulnerability in the crashing path and gets the layout-contributor digraph
to characterize the vulnerability, then guides a fuzzer with this digraph to explore diverging paths and search for exploitable
states, and finally stitches the diverging path with the crashing path to synthesize exploits.

2 MOTIVATION EXAMPLE

In this section, we will illustrate the exploit derivability issue
facing by automated exploit generation solutions, and present the
overview of our solution Revery, with a running example demon-
strated in Figure 1.

2.1 The Vulnerability

As shown in Figure 1, there is a heap overflow vulnerability at
line 10. The two objects obj1 and obj2 have the same size, and
are likely to be allocated next to each other in the heap. If the
vulnerability condition vul at line 9 is met, lengthy inputs could
cause an overflow in the buffer obj1->data. As a result, objects
(e.g., obj2) following this buffer will be corrupted.

Therefore, the statement at line 12 and 14 will read from and
write to corrupted memory address respectively. If the corrupted
pointer obj2->ptr points to invalid (e.g., nonexistent) memory,
these two statements will cause crashes. If it points to valid memory,
the statement at line 12 will execute normally (but result in wrong
return value), while the statement at line 14 will further corrupt
the target memory and cause Arbitrary Address Write (AAW).

From the perspective of exploitation, the statement at line 12 is
non-exploitable, unless the returned value res affects control-flow in
caller functions. But the statement at line 14 triggers an exploitable
state. It causes an AAW primitive able to overwrite arbitrary targets,
including the global function pointer handler which is invoked at
line 15, and thus could cause control-flow hijacking at line 15.

2.2 Exploit Derivability

As discussed in [36], exploit derivability is one of the core chal-
lenges of exploitation. More specifically, given a PoC input for a
vulnerability, the program could be turned into a weird machine,
but with a non-exploitable initial state. To successfully exploit the
vulnerability, we have to search for exploitable states in alternative
diverging paths, and lead the weird machine to exploitable.

As shown in the running example, assuming a PoC input prov-
ing the vulnerability at line 10 is provided (e.g., by fuzzers), it
could overwrite the field obj2->status to non-zero, and overwrite
obj2->ptr to invalid memory address, and cause a crash at line
12. So this PoC leads the weird machine to a non-exploitable initial
state. A successful exploitation has to trigger the vulnerability (at
line 10) and enter an exploitable state (e.g., at line 14).

For simplicity, we introduce several terminologies:

e Crashing path: the path taken by the PoC input, e.g., the path
9->10->11->12 in the example.

o Crashing point: the instruction where the program crashes or
a security violation is caught by sanitizers, e.g., line 12.

e Vulnerability point: the instruction where the vulnerability
(i-e., security violation) happens, e.g., line 10 in the example. A
crashing path may have multiple security violations. The first
violation point is denoted as the vulnerability point.

o Exploitable point: the instruction which could lead to a suc-
cessful exploit, e.g., line 14 in the example. Exploitable points
lead to exploitable states where the weird machine could work



properly. In practice, arbitrary address read/write/execute in-

structions (AAR/AAW/AAX) are classical exploitable points.

¢ Diverging path: the path where exploitable states could be
found, e.g., 9->11->13->14 in the example.

¢ Hijacking point: the instruction where the control-flow could
be hijacked, e.g., line 15 in the example. They are special ex-
ploitable points. In the running example, it is a second-order
exploitable point, caused by the first exploitable point in line 14.

¢ Exploitation path: the path taken by a successful exploit, e.g.,
9->10->11->13->14->15 in the example.

e Stitching points: special instructions in the diverging path and
crashing path, which could be stitched together to generate
the exploitation path, e.g., line 11 and line 13 in the example.
In practice, there may be numerous sub-paths between two
stitching points to explore.

It is worth noting that, the crashing point (line 12) in the running
example could reach to the hijacking point (line 15), but it is not
exploitable. As aforementioned, this hijacking point is a second-
order exploitable point, made by the exploitable point in line 14.
Without the help of line 14, line 15 could not be exploited.

So, to conduct successful exploitations, we have to think outside
the box made by the original PoC, and search for exploitable states
in diverging paths. This is the intuition of our solution and the
origin of the name Revery. To the best of our knowledge, existing
AEG solutions paid few attentions to this exploit derivability issue.

2.3 Our Solution: Revery

We proposed a novel solution Revery, to solve the exploit deriv-
ability issue and assess the exploitability of heap-based vulnerabili-
ties. At the high level, Revery analyzes the vulnerability in detail,
utilizes the vulnerability information to guide a fuzzer rather than
symbolic execution to explore diverging paths and search for ex-
ploitable states, then synthesizes exploitation paths by stitching
the crashing path and diverging path, and finally generates inputs
to trigger both the vulnerability and exploitable states. As shown
in Figure 2, it has three major components.

2.3.1 Vulnerability Analysis. Revery first analyzes the vulnerabil-
ity in detail, similar to existing AEG solutions. It uses dynamic
analysis to test target application with the provided PoC input.
More specifically, it tracks the states of each pointer and memory
object, and catches security violations along the crashing path. It
could thus identify the vulnerability point, e.g., line 10 in Figure 1.

More importantly, it identifies exceptional objects corrupted by
the vulnerability, e.g., obj2 in the example. Revery also identifies
the exceptional object’s indexing objects, which could be used to
locate the exceptional object, e.g., the global variable gvar in the
example. Moreover, it retrieves layout-contributor instructions from
the execution trace, which create the exceptional and indexing
objects and set up their point-to relationships, e.g., line 7 in the
example. These objects and contributor instructions are used to
construct a layout-contributor digraph.

2.3.2 Diverging Path Exploration. Revery searches for exploitable
states in diverging paths, to solve the exploit derivability issue.
Rather than using symbolic execution, it employs fuzzing.

First, it employs a novel layout-oriented fuzzing solution to ex-
plore diverging paths. To facilitate exploit generation, only diverg-
ing paths with memory layouts similar as the PoC input’s will be
explored. So, it drives a fuzzer to explore paths close to the crash-
ing path, in a similar way as directed fuzzing solutions [10]. But
instead of using the full crashing path, it uses the aforementioned
layout-contributor instructions as the fuzzer’s guidance. The fuzzer
could thus produce diverging inputs to exercise the diverging paths
(e.g., 9->11->13->14 in the figure) with proper memory layouts.

Then, Revery searches for exploitable states in the diverging
paths. Several heuristics are used to identify exploitable states. For
example, if a memory store operation’s destination is controlled by
the corrupted object, e.g., line 14, it is an exploitable state.

Furthermore, Revery also searches for hijacking points in these
diverging paths. Hijacking points sometimes are not obvious. So
Revery uses some heuristics to infer hijacking points. For example,
line 15 in the figure is a second-order hijacking point, which could
be enabled if line 14 overwrites the global function pointer.

2.3.3  PoC Stitching. Once an exploitable state (together with a
diverging input) in a diverging path is found, Revery will try to
synthesize a new input to trigger both the vulnerability and the
exploitable state. In general, it first finds the stitching points in the
crashing path (e.g., line 11) and in the diverging path (e.g., line 13),
with some specific data flow analysis.

Then it utilizes a lightweight symbolic execution to explore po-
tential sub-paths between these two stitching points (e.g., 11->13),
and stitch the crashing path with the diverging path to synthesize
an exploitation path (e.g., 9->10->11->13->14->15), and finally
generate inputs to exercise the exploitation paths. Several optimiza-
tions are deployed to make the symbolic execution lightweight.

Therefore, Revery could produce EXP inputs able to trigger both
vulnerabilities and exploitable states. It could help experts to quickly
generate working exploits. In certain cases, Revery is able to di-
rectly generate exploits. For example, Revery could generate an
exploit input to hijack the control flow, by utilizing the exploitable
state at line 14 to overwrite the global function pointer handler.

Assumptions. We assume the victim program is deployed in
regular modern operating systems, with default defenses enabled
(e.g., DEP [7] or sanity checks in glibc). Except that ASLR [23] is
disabled, since it requires an extra information disclosure vulnera-
bility or exploit, which Revery currently does not support.

3 VULNERABILITY ANALYSIS

To exploit a vulnerability, it is necessary to locate the vulnerabil-
ity point and the program state at that point. Furthermore, to solve
the exploit derivability issue, exploitable states around the vulner-
ability state should be searched for. Therefore, Revery performs
vulnerability identification to locate the vulnerability, and performs
layout analysis to characterize the vulnerability state.

3.1 Vulnerability Identification

Given a PoC input, Revery first needs to identify its correspond-
ing vulnerability point. Dozens of solutions have been proposed
to detect memory errors, e.g., AddressSanitizer [29]. However, Ad-
dressSanitizer will slightly change the memory layout of target
applications, and thus is not suitable for exploit generation.
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Figure 3: Illustration of heap-based vulnerability identifica-
tion. Each heap object and pointer is associated with a mem-
ory tag. An extra status is attached to each memory object.

Revery utilizes a different technique, named memory tagging
(MT, also known as memory coloring, memory tainting, lock and
key) to locate vulnerabilities. A recent work [30] has implemented
memory tagging in hardware. However, it encodes tags in memory
pointers and thus affects the program states. Moreover, it only
detects spatial memory violations, but not temporal violations.

Revery uses a shadow memory to non-intrusively track the tags
of pointers and heap objects. It also tracks the status of heap objects,
enabling detection of not only spatial vulnerabilities (e.g., heap
overflow) but also temporal vulnerabilities (e.g., use-after-free).

In principle, each pointer is expected to access a specific memory
object of valid status. If it is used at runtime to access an object of
different tags or invalid status, then a security violation is caught.
Figure 3 shows an example of vulnerability identification.

3.1.1  Memory tags. Each heap object and pointer is attached with
amemory tag, indicating its lineage. This tag will be uniquely gener-
ated when an object is created, and propagate to the object’s point-
ers and other related pointers (similar to taint analysis). Moreover,
each heap object is associated with a status, i.e., uninitialized,
busy, or free, standing for three status in its life-cycle, i.e., allo-
cated but not initialized, initialized, or freed. It is worth noting that,
a freed memory region could be allocated to new objects, and its
memory status and tag will change accordingly.

In some corner cases, developers could use one object’s pointer
to get another object’s pointer, with an arithmetic operation. It
will wrongly propagate the first object’s tag to the second pointer.
Fortunately, this is rare for heap objects, since the offsets between
heap objects are not fixed. The only exception is heap management
functions, which could inspect adjacent objects in this way, no
matter what semantics these objects would have. So Revery will
disable tag propagation and validation for these special functions.

3.1.2  Security rules. For each heap memory access instruction (i.e.,
load and store), we could get the pointer’s tag tag_ptr and target
memory region’s tag tag_obj and status status_obj. The memory
access must not violate the following security rules:
e V1: access intended objects: Instructions should only access
intended objects, i.e., tag_obj and tag_ptr must match.
e V2: read busy objects: Load instructions should not access
freed or uninitialized memory, i.e., status_obj must be busy.
e V3: write alive objects: Store instruction should not access

freed memory, i.e., status_obj mustbebusyoruninitialized.

Any violation of these rules will cause a vulnerability. For ex-
ample, a buffer overflow memory access will violate rule V1. An

5: call malloc
6: mov [ptr],eax

+0x00 ptr ===+ layout-contributor digraph:

froxoo? |7~ ins 6
-~ == +0x08 ptr
[£0x10 ptr J-—— ins$
tag: 15 H ins 12 \ns 25
fr0x00 data ns 10
[+0x08 ptr
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layout-contributor slice:
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11: mov ebx,[ptr]
12: mov [ebx+8],eax

23: mov [eax],0x0
24: mov ebx,[ptr]
25: mov [ebx+0x10],eax +0x00 ?

-

35: call malloc

36: mov ebx,[ptr]

37: mov ecx,[ebx+0x10]
38: mov [ecx+8],eax

| S

(a) sample execution trace (b) layout digraph (c) layout-contributor

Figure 4: An example layout-contributor digraph. Assume
the object created at line 35 is an exceptional object. It could
be indexed by objects created at line 22 and 5 repsectively,

and eventually pointed by a global pointer ptr.

uninitialized vulnerability will violate rule V2. A use-after-free
(UAF) vulnerability could violate either V1, V2 or V3. If the freed
object’s memory has not been taken by other objects, then read
access to it will violate V2, and write access to it will violate V3. If
the freed object’s memory is taken, then its tag will change, and
any access to it via the original dangling pointer will violate V1.

3.2 Layout Analysis

Revery further analyzes object layouts to characterize the vul-
nerability state and retrieve instructions contributing to the state.

3.2.1  Vulnerability-related Object Layout. Each heap-based vul-
nerability (including heap overflow and UAF) is related to one
exceptional object, whose content is (or will be) corrupted by the
vulnerability. Further operations on these objects could lead the
weird machine to exploitable states.

Assume the vulnerability point uses a pointer with tag tag_ptr
to access a target object with tag tag_obj. If it is a write access,
the object with tag tag_obj is the exceptional object, which will
be corrupted by this write access. If it is a read access and this
vulnerability is a UAF, the object with tag tag_ptr is the exceptional
object, which will be corrupted by new object allocations that take
the same memory. Revery currently does not support other types
of read access violation well.

Further, Revery also tracks all indexing objects that can be used
to locate exceptional objects. These exceptional objects and index-
ing objects are connected with the point-to relationship. As a result,
Revery could get a digraph of objects, denoted as layout digraph.
This layout digraph characterizes the vulnerability state to some
extent. Figure 4(b) shows an example layout digraph.

3.2.2  Vulnerability-related Code. As aforementioned, the weird
machine has to enter specific initial states, including the vulnera-
bility state. So, it is necessary to prepare a similar object layout as
the vulnerability’s, both in diverging paths and exploitation paths.
Thus, instructions contributing to the layouts are important.

We can see that, the following two types of operations could
contribute the object layout: (1) memory allocations that creates
new objects, and (2) store operations that assign an object’s field
with a pointer to another object. As a result, Revery could retrieve



all such contributor operations, which operate on objects in the
layout digraph, and generate a layout-contributor digraph.

More specifically, each node in this digraph is an exceptional
object or an indexing object, with an attribute of the object’s creator
instruction and memory tag. Each edge in the digraph represents a
point-to relationship between two objects, with an attribute of the
pointer assignment instruction. Given a target exceptional object,
we could use backward slicing to construct this digraph. Figure 4(c)
shows an example layout-contributor digraph. This digraph has a
simpler form, called layout-contributor slice, which is a sequence of
contributor instructions in execution order.

4 DIVERGING PATH EXPLORATION

To solve the exploit derivability issue, it is necessary to explore
diverging paths and search exploitable states in them. In this section,
we will introduce how Revery explores diverging paths.

4.1 Alternative Choices

Existing automated exploit generation solutions, e.g., AEG [8]
and Mayhem [13], heavily rely on symbolic execution to explore
the crashing path or reachable paths from the vulnerability point,
in order to search exploitable states along the path exploration.
However, symbolic execution has several severe challenges, and is
not suitable for path exploration or exploitable state searching.

First, it is not scalable in path exploring. It suffers from the path
explosion issue caused by branches and loops in programs. Even
when analyzing one path, it costs too many resources. Moreover,
the symbolic constraints are often too complicated to solve.

Second, symbolic execution may get blind to certain exploitable
states. It has to concretize some symbolic values along the explo-
ration, by adding extra constraints of concretized value assignments.
It is impossible to try all candidate concretized values, thus misses
certain values and causes blindness to certain exploitable states.

For example, it will concretize the symbolic arguments of mem-
ory allocation in a path, in order to model the memory states and
explore following sub-paths. It is likely that only a small number
of allocations could cause exploitable states. So the concretized
memory allocation may lead to a non-exploitable state.

Moreover, it will also concretize symbolic indexes in memory
access operations, because otherwise the operations’ results are
unknown. Similarly, it could also lead to non-exploitable states.

Another choice is exploring paths with the combination of fuzzing
and symbolic execution, e.g., Driller [34]. However, the symbolic
execution component of such solutions still have the aforemen-
tioned challenges. Moreover, the fuzzing component usually lacks
of targets, and thus is not effective at finding exploitable states.

4.2 Layout-Oriented Fuzzing

Revery utilizes fuzzing solely to explore diverging paths and
search for exploitable states. As shown in the field of vulnerability
discovery, fuzzing is more effective than symbolic execution in
exploring paths and program states. So, it is likely that fuzzing
could also help find diverging paths and exploitable states faster.

Revery employs a novel layout-oriented fuzzing solution guided
by the layout-contributor digraph, to explore diverging paths that
build similar memory layouts as the vulnerability.

Figure 5: An example layout-contributor slice. Compared to
the path a=>b, the path a=>c=>d has a longer prefix with the
target slice in the path a=>c=>e=>f.

4.2.1 Design. Revery extends the popular coverage-guided fuzzer
AFL to perform fuzzing. Instead of relying solely on code coverage
to guide path exploration, Revery uses layout-contributor digraph
as a guidance to tune the direction of exploration and mutation.

Similar to directed fuzzing [10], Revery drives the fuzzer to ex-
plore paths close to the crashing path. It only aims at matching
instructions in the layout-contributor slice, and ignores other in-
structions in the crashing path. The design choices are made from
the following three intuitions.

For simplicity, we introduce several terminologies. Given an
input I, it could hit several layout-contributor instructions (maybe
not in the same order as the guiding slice). The full list of such
instructions is denoted as Lg, and its longest common subsequence
(LCS) with the target guiding slice is denoted as Pg.

o Intuition 1: An input that hits all layout-contributor instruc-
tions, in the same order as the guiding slice, could construct a
similar memory layout as the vulnerability.
Layout-contributor instructions are responsible for creating the
exceptional object of a vulnerability and its indexing objects,
as well as setting the point-to relationships among them. So,
an input hitting the full layout-contributor slice could probably
construct similar memory layouts.

e Intuition 2: An input that hits a longer subsequence of the
guiding slice is more likely to derive inputs hitting the full slice.
In other words, if input I,’s LCS P, is longer than I;,’s LCS
Py, then the input I, is better than Ij,. As shown in Figure 5,
assuming the target slice is in path a=>c=>e=>f, then an input
exercising the path a=>c=>d is better than other inputs exercis-
ing a=>b. Further mutations on this input could derive inputs
hitting the full guiding slice faster.

e Intuition 3: Inputs hitting fewer layout-contributor instruc-

tions are more likely to introduce fewer troubles for further
exploit generation.
In other words, for two inputs I, and I, if their LCS P, and
Py, have a same length, but the layout-contributor instruction
list L, is longer than Ly, then the input I}, is better than I,.
In this case, the input I, has more duplicated or out-of-order
contributor instructions than Ij,, which could cause redundant
object creation or layout construction, making the memory
layout too complicated to exploit.
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Figure 6: Illustration of the fuzzer implemented by Revery.

4.2.2  Implementation Details. Revery extends the popular fuzzer
AFL [37]. As shown in Figure 6, AFL applies a continuous loop
to explore paths. It (1) keeps a queue of good testcases, i.e., seeds;
and (2) selects a seed from the queue; and then (3) mutates the
seed to get a bunch of new testcases, and then (4) run the target
binary program with the generated testcases in QEMU, and track the
coverage, and then (5) identify seeds based on coverage information.
Revery modifies AFL in the following two aspects.

Tracking Slice Hit Count. Revery adds an extra buffer HIT in
the shared memory between QEMU and the fuzzer driver, together
with the existing bitmap used for code coverage tracking. HIT[9]
is used to track the count of slice hit, while HIT[i] is used to track
whether the i-th instruction in the guiding slice has been hit or not.

More specifically, each time a layout-contributor instruction is
executed, QEMU will increase the slice hit count HIT[@]. If this
instruction is the n-th (n>=1) instruction in the guiding slice, then
QEMU will set HIT[n] if and only if HIT[n-1] has been set. In this
way, the fuzzer driver could get the slice hit count in HIT[@], and
the LCS of guiding slice in HIT[1:N].

Tuning Fuzzing Directions. Revery modifies the fuzzer dri-
ver to make use of the collected slice hit information. Basically, it
slightly changes the algorithms of seed selection. When picking up
a seed from the queue to mutate, it first prioritizes seeds that have
longer LCS, as discussed in Intuition 2. Then among seeds with
LCS of same length, it prioritizes seeds with fewer slice hit count,
as suggested in Intuition 3. Finally, it prioritizes seeds with smaller
size and faster execution time, same as AFL’s default policy.

4.3 Diverging Inputs Filtering

With layout-oriented fuzzing, Revery could find diverging in-
puts able to trigger the same layout-contributor slice as the PoC
input. However, unlike layout-contributor digraph, the data flow
constraints are missing in the layout-contributor slice. So the diverg-
ing inputs sometimes do not match the target layout-contributor
digraph built from the crashing path. Revery thus takes an extra
step to isolate diverging inputs that could match the target layout-
contributor digraph.

In general, it first aligns the diverging path with the crashing
path, and locates the instructions responsible for creating the excep-
tional object. Then, it constructs a new layout-contributor digraph
of the exceptional object from the diverging path by backward slic-
ing, in a same way as the crashing path. Finally, it matches this
new digraph against the target digraph, by comparing each node’s
memory tag and its creator instruction’s address in two digraphs.
Figure 7 shows an example of how the match works.

Diverging

diverging paths crashing path

target

! it i
digraph e

Match & Align

Figure 7: Filter diverging paths by matching their layouts
against target crashing path’s and aligning them when
matched.

If these two digraphs do not match, then this diverging input
will be discarded. Otherwise, the diverging input is kept. Moreover,
these two digraphs’ nodes (i.e., heap objects) will be aligned accord-
ingly, as well as the memory tags of all nodes. So, we could infer
each object’s counterpart between the diverging path and crashing
path, enabling further common analysis on these two paths.

4.4 Exploitable States Searching

Even if the diverging paths have similar layouts as the vulner-
ability, not all of them are exploitable. Revery further removes
diverging paths that do not have exploitable states.

4.4.1 Exploitable State. The exceptional object could affect other
objects, and sometimes will be directly or indirectly used in some
sensitive operations. The program states resulting from these sen-
sitive operations are denoted as exploitable states.

In this paper, we mainly consider two types of sensitive (ex-
ploitable) operations, i.e., memory write and indirect call. For
example, if the target address of a memory write is affected by
the exceptional object, then attackers may control where to write
and cause AAW (arbitrary address write), i.e., a commonly used
exploitable state in practice. If attackers could affect the target of
indirect calls, including virtual function calls and indirect jmp in-
structions etc., then they could hijack the control flow. In addition,
Revery offers a template for experts to extend the definition of
exploitable points, e.g., operations launching the unlinking attack.

4.4.2 Exploitable States Searching. This problem thus becomes
identifying sensitive instructions whose operands are affected by
the exceptional objects. Taint analysis is a straightforward solution.
Revery marks each object creation operation as a taint source,
and attaches a unique taint label to it. Each operation propagates all
source operands’ taint labels to the destination. At each sensitive
instruction (i.e., memory write or function call), the target address’
taint labels will be checked if they contain the exceptional object’s
taint label. If yes, then this sensitive instruction is exploitable.

5 EXPLOIT SYNTHESIS

In this section, we will introduce how to synthesize new exploits
from PoC inputs and diverging inputs.

Once an exploitable state is found in a path, existing AEG solu-
tions usually generate exploits by solving the path, vulnerability
and exploit constraints. However, as discussed in Section 4.1, sym-
bolic execution solely is not effective in exploit generation.
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Therefore, Revery uses symbolic execution as few as possible.
It uses a lightweight symbolic execution as a bond to stitch the
crashing path and diverging path together, and reuses the PoC input
and diverging inputs to further reduce complicated constraints,
making symbolic execution more practical.

Figure 8 shows the general workflow of exploit synthesis. In
practical, it first identifies stitching points, and then explores sub-
paths between stitching points and synthesize exploitation path,
and finally solve related constraints to generate working exploits.

5.1 Identify Stitching Points

We first introduce how Revery identifies stitching points in both
the crashing path and diverging path.

5.1.1 Stitching Points in the Crashing Path. In order to successfully
exploit the victim program, its vulnerability must be first triggered,
and some exceptional objects are corrupted. Revery thus chooses
locations where exceptional objects are corrupted in the crashing
path as stitching points.

As mentioned in Section 3.2.1, in the crashing path, each write
access violation corrupts an exceptional object, and thus it is a
candidate stitching point. For each read access violation in a UAF
vulnerability, the exceptional object is the one that has been freed
but still pointed by the dangling pointer. This exceptional object’s
memory region will be occupied by another memory allocation.
Revery takes the new memory allocation operation as a candidate
stitching point.

Since there could be multiple violations in one crashing path,
there could also be multiple stitching points. Revery will try to
stitch each of them with the diverging path.

5.1.2  Stitching Points in Diverging Paths. In order to successfully
exploit the victim program, exploitable operations must be per-
formed on corrupted exceptional objects or collateral objects.

What are good stitching points? Every instruction could be used
as stitching points. But not all of them are good ones. A proper
stitching point should satisfy several criterions:

o Not too close to entry points. Otherwise, many duplicated opera-
tions as the crashing path will be performed. Since duplicate
operations (e.g., object initializations) will not happen in a le-
gitimate control flow, it is infeasible to find a path to connect
this stitching point with its counterpart in the crashing path.

e Not too close to exploitable points. Otherwise, a longer path is
required to connect this stitching point with its counterpart,
requiring more efforts of symbolic execution. The stitching

point can be set before certain operations, e.g., initialization of
exploitable points’ operands, to save symbolic execution efforts.
e Minimum data dependency. The data flow after the stitching
point in the diverging path should have few intersections with
the data flow before the stitching point in the crashing path.

How to find stitch points? At a high level, Revery matches the
diverging path’s data dependency against the crashing path’s, and
locates the differences. Then it uses the instruction which causes
the differences in the diverging path as stitching point.

First, Revery builds the layout-contributor digraph of the ex-
ploitable operation’s operand in the diverging path. Then it matches
this digraph against the digraph of the exceptional object in the
crashing path. If the former is a sub-graph of the latter, it means
the crashing path has already set up all data dependencies for the
exploitable operation. Then, the instruction in the diverging path,
which is right after the last write access to the exploitable opera-
tions’ operands, is chosen as the stitching point.

Otherwise, there are different nodes or edges in the diverging
path’s digraph, i.e., the diverging path has alternated the depen-
dency of the exploitable operations. In this case, Revery chooses
the earliest instruction (object creation or write) in the diverging
path, which causes differences in the digraph, as the stitching point.

5.2 Control-Flow Path Stitching

In order to stitch the crashing path and the diverging path to-
gether, Revery explores potential sub-paths connecting the stitch-
ing points in these paths. In general, it relies on symbolic execution
to explore paths. However, Revery utilizes several heuristics to
efficiently guide symbolic execution.

First of all, Revery uses the function call stack to guide the path
exploration. It inspects the call stacks at the two stitching points
respectively, and finds the differences. Figure 9 shows two example
call stacks. These differences in call stacks indicate the direction of
path exploration. Function invocations in the crashing path (e.g.,
gl, g2, ., gMin the figure) should be returned one by one
first, while function invocations in the diverging path (e.g., h1, h2,

., hKin the figure) should be called one by one later.

In other words, when exploring potential paths, Revery will
add the return instruction of function gM, ., 82, gl astarget
instructions one by one, and then add the entry point of function
h1, h2, ., hK as target instructions one by one. These tar-
get instructions are dominator points between the two stitching
points. Then Revery will explore potential sub-paths between these
intermediate target instructions.

Revery further mitigates the sub-path exploration by reusing
existing paths. For example, if there is already a sub-path connect-
ing two intermediate destinations in either the diverging path or
the crashing path, Revery will reuse this sub-path. Revery also per-
forms a simple loop identification algorithm, and finds a sub-path
to escape the loop as soon as possible, in order to reduce the bur-
den of symbolic execution. Sometimes, the reused sub-path would
cause the overall path unsolvable, Revery will try to remove these
sub-paths and search for alternative sub-paths.

In this way, Revery greatly reduces the burden of symbolic exe-
cution when exploring sub-paths to connect the stitching points.



Name CTF Vul Type Crash Type | Violation Final State EXP. Gen. | Rex Expcl;cl))itl:;ble
wo02 TU CTF 2016 UAF heap error \4! EIP hijack YES NO | Exploitable
wo02_fixed TU CTF 2016 UAF heap error Vi EIP hijack YES NO | Exploitable
shop 2 ASIS Final 2015 UAF mem read Vi EIP hijack YES NO | UNKNOWN
CONTROL main RHme3 CTF 2017 UAF mem read Vi mem write YES NO | UNKNOWN
FLOW babyheap SECUINSIDE 2017 UAF mem read Vi mem write YES NO | UNKNOWN
HIJACK b00Oks ASIS Quals 2016 Off-by-one no crash Vi mem write YES NO Failed
marimo Codegate 2018 Heap overflow no crash Vi mem write YES NO Failed
ezhp Plaid CTF 2014 Heap overflow no crash Vi mem write YES NO Failed
notel ZCTF 2016 Heap Overflow no crash Vi mem write YES NO Failed
note2 ZCTF 2016 Heap Overflow | no crash V1 unlink attack NO NO Failed
EXPLOIT- note3 ZCTF 2016 Heap Overflow no crash Vi unlink attack NO NO Failed
ABLE fb AICTF 2016 Heap Overflow no crash \4! unlink attack NO NO Failed
STATE stkof HITCON 2014 Heap Overflow no crash Vi unlink attack NO NO Failed
simple note Tokyo Westerns 2017 Off-by-one no crash Vi unlink attack NO NO Failed
childheap SECUINSIDE 2017 Double Free heap error \4! = NO NO | Exploitable
CarMarket ASIS Finals 2016 Off-by-one no crash Vi - NO NO Failed
FAILED SimpleMemoPad CODEBLUE 2017 Heap Overflow no crash - - NO NO Failed
LFA 34c3 2017 Heap Overflow | no crash - - NO NO Failed
Recurse 33¢3 2016 UAF no crash - - NO NO Failed

Table 1: List of CTF pwn programs evaluated with Revery. Out of 19 applications, Revery could generate exploits for 9 of them,
and generate EXP inputs to trigger exploitable state for another 5 of them, and failed for the rest 5.

f1 f1

N N
g1 hi
aM hK

stitching point
in crashing path

stitching point
in diverging path

Figure 9: Example call stacks of stitching points

5.3 Exploit Generation

Once a sub-path connecting two stitching points is found, a can-
didate exploitation path is constructed. Revery could also solve the
vulnerability constraints, path constraints and exploit constraints
to generate final exploit samples. However, it is inadequate.

5.3.1 Exploitable State Constraints. Simply solving constraints of
the exploitation path may not trigger the same exploitable state
as the diverging path. Revery thus adds several extra data con-
straints to the exploitation path, ensuring the program state is still
exploitable.

First, the memory allocation sizes in the exploitation path should
be the same as the diverging path, in order to trigger the exploitable
states as in the diverging path. Revery records the concrete sizes of
all memory allocations when analyzing the diverging path. In the
exploitation path, if a memory allocation which was in the diverging
path has a symbolic size, then Revery will add a constraint to ensure
this size equals to the concrete value in the diverging path.

Second, Revery will align the digraph of the crashing path with
the diverging path’s. Certain symbolic addresses in the diverging
path are logically the same as their counterparts in the crashing

path. So, in the stitched exploitation path, extra constraints must be
introduced to claim the equality between these symbolic addresses.

5.3.2  Payload Constraints. With the aforementioned exploitable
state constraints, together with the vulnerability and path con-
straints, Revery is able to generate EXP inputs to trigger both ex-
ploitable states and vulnerabilities. These inputs could help security
experts to construct a full exploit.

In certain cases, Revery is able to directly generate working
exploits. At the exploitable point, Revery could construct payload
constraints which could lead to control flow hijacking. If the ex-
ploitable point is a function call (e.g., indirect call or jmp instruction)
and its target is a symbolic value, Revery adds an extra constraint
to set the target to attacker controlled value. If the exploitable state
is a write access, and both the destination address and content to
write are symbolic, then Revery adds an extra constraint to over-
write a known address (e.g., Global Offset Table entries or global
function pointers) with attacker controlled value.

In this way, Revery could generate exploits to hijack control-flow
for certain cases. However, it is not always guaranteed to succeed.

6 EVALUATION

We implemented a prototype of Revery based on the binary anal-
ysis engine angr [31] and the popular fuzzer AFL [37]. It consists
of 1334 lines of code to analyze vulnerabilities, 190 lines of code
to explore diverging paths with fuzzing, and 1249 lines of code to
stitch paths and generate exploits.

In this section, we present the evaluation results of this system.
The experiments are conducted in a Ubuntu 17.04 system running
on a server with 115G RAM and Intel Xeon (R) CPU E5-2620 @
2.40GHz"*24. We evaluated Revery against 19 vulnerable programs



collected from 15 real world CTF (capture the flag) competition, 14
of them can be found in CTFTIME [1].!

To thoroughly evaluate the effectiveness of Revery, we selected
the target programs from CTF events based on the following rules:
(1) no source code or debug symbols exist for these programs; (2)
each program must have at least one heap-based vulnerability; (3)
the diversity of vulnerability types must be large; and (4) the quality
of the source CTF events is well acknowledged.

All programs are tested in a regular modern Linux operating
system (Ubuntu 17.04), with the defense DEP [7] enabled. Unlike
traditional environments, we disabled ASLR [23] in the evaluation.
In practice, an information disclosure vulnerability or exploit is
required to bypass ASLR. The current prototype of Revery could
not generate information disclosure exploits yet.

6.1 Exploits by Revery

Table 1 shows the list of programs we evaluated. Out of 19 pro-
grams, Revery successfully exploited 9 of them, i.e., able to hijack
their control flow. Revery could trigger the exploitable states for
5 more programs, i.e., providing exploit primitives for experts to
launch successful exploits. It failed to analyze the rest 5 programs.
More details will be discussed later.

This table also shows in detail the name and CTF event of each
program. It shows the type of the known vulnerability in each
program, including heap overflow, off-by-one, UAF and double free.
Further, it shows the crash type of each vulnerability, i.e., results
of applying PoC inputs to the vulnerable programs. Some of them
are caught by the memory manager’s sanity checks (denoted as
heap error in the table), some others crash at invalid memory
read instructions. Most of them do not even crash.

In addition, it shows the violation type of each vulnerability
detected by Revery, the final exploitable state triggered by Revery,
and whether Revery could generate exploits or not. Revery could
detect security violations in 16 out of 19 programs. It could trigger
exploitable states of EIP hijacking, arbitrary memory write, and
unlink attack for 3, 6 and 5 programs respectively. Revery could
generate working exploits for first two types of exploitable states.

As a comparison, we also evaluated the open-source AEG solu-
tion Rex [5] provided by the Shellphish team and the exploitable
plugin in GDB on these programs. As shown in the last two columns
of the table, Rex could not solve any of these programs, and GDB
exploitable simply assesses the exploitability based on crash type.

6.2 Case Studies

In this section, we investigated these programs in detail, and
analyzed why our solution Revery succeeded or failed.

6.2.1 Control-Flow Hijacking Exploits. Revery successfully
generated control-flow hijacking exploits for 9 programs. With the
given PoC inputs, 2 programs corrupt the heap metadata and are
caught by the sanity checks deployed in glibc memory allocator.
Three other programs crash at invalid memory read instructions,
whose results are only dumped by functions like printf, which

1We did not evaluate Revery on CGC programs which have heap-based vulnerabilities
or real world programs, because the binary analysis engine angr [31]’s constraints
solving ability is not enough for complex programs. And we are still working on it.

could not cause control-flow hijacking. The rest 4 programs do not
even crash with the provided PoC.

Limit of State-of-the-art AEG Solutions. Such vulnerabilities are
usually considered as non-exploitable by exploitability assessment
tools. To successfully exploit these vulnerabilities, we have to avoid
the metadata corruption being caught by sanity checks, and accu-
rately model the memory allocator if using symbolic execution.

So state-of-the-art AEG solutions could not generate exploit
automatically for them. We have tested all these programs with
Rex[5], an automated exploit generation tool that developed by the
Shellphish team, which won the first in offense in CGC. But it failed
to generate exploits for any of them.

Performance of Revery. By exploring exploitable states in diverg-
ing paths, Revery can generate exploits for all 9 programs. For
example, Wo02 and WoO_fixed crash because one object is freed
twice. To exploit this kind of vulnerabilities, heap Fengshui [32] is
needed, which is too complicated for automated solutions. Instead,
Revery goes back to the vulnerability point, and finds a diverging
path which could lead to EIP hijack.

Three of the exploitable states could hijack the program counter,
and the other six could cause arbitrary address write (AAW). AAW
is a well-known exploit primitive, could enable many exploits. For
example, it could be used to modify the global offset table (GOT)
and hijack the control flow.

6.2.2 Exploitable States. Sometimes Revery is not able to gen-
erate working exploits, even if it has found the exploitable states
and stitched an exploitation path. As shown in the table, Revery
could trigger exploitable states but fail to generate working exploits
for 5 programs.

For these programs, there is no critical data fields (e.g., function
pointer, VTable pointer etc.) in the exceptional object, and it is
extremely challenging to automatically generate exploits against
them. Instead, we have to utilize the corrupted metadata in the
exceptional objects to exploit the specific heap allocators.

Revery utilizes layout-oriented fuzzing to find a diverging path
that will free the exceptional object, and trigger an exploitable state.
Given that the glibc library uses a double-linked list to maintain
objects, unlinking a node from this list (due to certain memory
operations) will update forward and backward nodes’ pointers,
causing an unintended memory write operation. This is known as
unlink attack [6].

However, to successfully exploit such states, we have to arrange
the heap layout, with heap Fengshui and other techniques, which is
out of the scope of this paper. However, with the inputs generated
by Revery, experts could manually massage the heap layouts and
write an exploit much quicker.

6.2.3 Failed Cases. As aforementioned, Revery cannot guaran-
tee to generate working exploits or trigger exploitable states. In our
experiments, Revery failed for 5 programs.

Limitations of Vulnerability Detection. For some of the programs,

Revery fails to detect the security violations. For example, SimpleMemoPad

has a buffer overflow inside objects, i.e., it will corrupt the neigh-
bor data fields rather than neighbor objects. Revery currently only
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Figure 11: Time interval for finding exploitable states in di-
verging path by Revery, comparing to AFL.

supports object level corruption detection. We leave it as a future
work to support detection of in-object buffer overflow.

Limitations of Angr. Our solution Revery relies on angr [31] to
perform symbolic execution. Angr emulates all syscalls by itself,
which has not fully implemented yet. Alternatively, angr rewrites
library functions in Python, and hooks the original functions. How-
ever, this is far from finished too. As a result, angr cannot support
most real world programs. This is also the major reason why we
only evaluate Revery on CTF programs.

For example, to exploit childheap, some special characteristics
of the fgets function are required. This function is hooked by angr
but the required features are not properly implemented. So Revery
is not able to find a way to exploit the vulnerability.

6.3 Efficiency of Layout-oriented Fuzzing

We further evaluated the efficiency of Revery in terms of diverg-
ing path exploration and exploitable states searching. We compared
our layout-oriented fuzzing with the original fuzzer AFL.

Figure 10 shows the time interval used by Revery and AFL to
find the first input that hits all instructions in layout-contributor
slice. On average, Revery is 122% faster than AFL.

Revery also spends less time than AFL to find an exploitable
state in diverging paths. As shown in Figure 11, AFL failed to find
exploitable states for 3 programs in 8 hours. By contrast, Revery
has found exploitable states for all the programs. For programs that

Val Revery Path Revery | SYMBEX.| SYMBEX.
Name T Gen. Reuse EXP. Gen. EXP.
ype Time (s) Rate Work | Time(s) Work
shop 2 UAF 238 100% YES Failed NO
note2 BOF 70 100% YES Failed NO
ezhp BOF 56 98.0% YES Failed NO
b BOF 60 85.1% YES Failed NO
note3 BOF 83 84.1% YES Failed NO
main UAF 146 71.1% YES >4hours | Unknown
stkof BOF 208 65.5% YES Failed NO
marimo BOF 264 62.2% YES Failed NO
simplenote BOF 263 41.9% YES Failed NO
babyheap UAF 442 27.8% YES Failed NO
notel BOF 161 84.0% YES 412 YES
books BOF 81 83.3% YES 91 YES
wo02 UAF 38 22.7% YES 39 YES
wo02_fixed UAF 38 22.7% YES 38 YES

Table 2: Comparison with symbolic execution

both AFL and Revery succeed, Revery is 247% faster than AFL on
average.

In short, with layout-oriented fuzzing, Revery could find diverg-
ing paths and exploitable states much faster than AFL.

6.4 Efficiency of Control-Flow Stitching

Given the candidate exploitable states, Revery utilizes a novel
control-flow stitching solution to generate inputs to trigger both the
vulnerability and exploitable states. In theory, symbolic execution
could be used solely to explore paths from the vulnerability point
to the exploitable states. To compare the efficiency between them,
we thus evaluated Revery and a strawman symbolic exuection tool
SYMBEX based on angr.

6.4.1 Overall Results. Table 2 shows the evaluation results on 14
programs which angr is able to handle. Revery could generate EXP
inputs to trigger exploitable states for all 14 programs in minutes.
But SYMBEX could only solve 4 of them. The exploitable points of
these 4 programs are right after the vulnerability points and before
the crashing points, and thus require no efforts to explore paths.
SYMBEX failed to solve the program main in four hours, and failed
for the rest 9 programs.

Path Reusing Rate. We use path reusing rate to assess the quality
of stitching points that Revery found. This rate is computed based
on the count of basic blocks reused from the diverging path, com-
pared to the count of basic blocks in the exploitation path. A higher
reusing rate indicates that the stitching point is better for exploit
generation. As shown in the table, more than half of the programs
has a path reusing rate higher than 60%.

Failure Analysis. SYMBEX failed for 9 programs. We pointed
out that, traditional symbolic execution is unable to infer some
exploitable state constraints and thus fails to generate exploits. As
discussed in Section 5, Revery could infer these constraints from the
diverging path. In the following, we take two programs babyheap
and marimo as examples.

Listing 1: Code fragment of babyheap

i = get_int_from_user ()
team = team_list[i];
if ( team ) manage_team(team);




1. puts(“Select number or [Black”);

2. printf(“>>");

3. scnaf(“%c”,&tmp)

4. index = tmp-0x30;

5. edit_marimo(marimo_list[index])
bss heap

q q marimo-0
marimo_list

0: marimo-0 ptr / ____________
1: marimo-1 ptr \
marimo-1

Figure 12: An CTF program Marimo. Data constraints is essen-
tial for generating a heap overflow exploit.

Example 1:babyheap. Asshown in Listing 1, the target exploitable
state is in the function manage_team, which could only be triggered
if the the argument team is not NULL. But this value is retrieved
using a symbolic index from the array team_list. Traditional sym-
bolic executions, e.g., SYMBEX, will concretize the symbolic index,
and in most cases will get a NULL pointer from the array. As a
result, it could not trigger the exploitable state.

Example 2: marimo. Figure 12 illustrates the vulnerability of
marimo. There is an overflow in the marimo-@ object, which cor-
rupts the object marimo-1. If and only if the object marimo-1 is
passed to edit_marimo function, the exploitable state could be trig-
gered. However, angr does not know the knowledge and gets a
random value from the solver.

On the other hand, Revery knows this knowledge from the
crashing path, and adds the extra constraint of the exploitable
state. So it could generate exploits successfully.

7 RELATED WORK

7.1 Automatic Exploit Generation

Revery aims at automatic exploit generation, which is still an
open challenge. A few number of solutions have been proposed.

7.1.1 AEG Based on Symbolic Execution. APEG [12] is the first
automated exploitation solution based on patch analysis. AEG [9]
develops a novel preconditioned symbolic execution and path pri-
oritization techniques to generate exploits at the source code level.
Mayhem [13], which is built based on the hybrid symbolic execu-
tion and memory index modeling techniques, can automatically
generate exploits at the binary level.

These solutions symbolically execute the whole program and are
not scalable in path exploration. Unlike Revery, they are unaware
of exploitable state constraints. Moreover, they concretize symbolic
indexes, e.g., Mayhem untilizes a prioritized concretization, but it
could still lead to non-exploitable states. In addition, they are not
able to handle heap-based vulnerabilities.

7.1.2  AEG Based on Crash Analysis. Sean Heelan [18] makes use of
dynamic taint analysis and program verification to generate control-
flow-hijack exploits based on the crashing PoC input. Similarly,
starting from the crashing point, CRAX [20] symbolically executes

the program to find exploitable states and automatically generates
working exploits at the binary level.

These solutions only search the crashing paths for exploitable
states. As aforementioned, exploitable states do not always exist in
crashing paths. So they will be hindered by the exploit derivability
issue. By contrast, Revery explores exploitable states not only in
crashing paths but also in diverging paths.

7.1.3  Data-Oriented AEG. FLOWSTITCH [19] automatically gen-
erates data-oriented exploits, able to reach information disclosure
and privilege escalation, by stitching multiple data flows without
breaking the control flow.

Although it also uses stitching, it is quite different from Revery.
First, it targets data-flow stitching, while the control-flow is intact,
making symbolic execution easier. Second, it only produces exploits
of data-only attacks, instead of control-flow hijacking attacks.

7.2 Directed Fuzzing

Revery utilizes fuzzing to explore diverging paths. There are
many advances in this field in recent years.

7.2.1 Coverage-Guide Fuzzing. There are many works which aim
to increase code coverage of fuzz testing, called coverage-guide
fuzzing. AFL [37], libFuzzer [27], honggfuzz [35], AFLFast [11],
VUzzer [24] and CollAFL [16] are some state-of-the-art coverage-
guided fuzzers. In general, they prioritize the seeds with higher
code-coverage for further mutation. However, they do not target
specific code or memory states, and thus are not efficient in explor-
ing diverging paths which must satisfy some requirements.

7.2.2  Target-Directed Fuzzing. The most similar work to our focus
is AFLGo [10], a greybox fuzzing tool. AFLGo[10] prioritizes seeds
that are closer to predetermined target locations, enabling efficient
directed fuzzing. But a diverging path consists of multple target
points. And AFLGo is not effective in exploring diverging paths
which have multiple target points. Revery guides a fuzzer with
layout-contributor slice to explore diverging paths and search for
exploitable states efficiently.

7.3 Vulnerability Detection

Revery utilizes memory tagging to detect security violations.
There are many sanitizers [2, 25, 29, 33] proposed for this purpose.
For example, ASAN [29] pads objects with redzones and places
freed objects into quarantines, able to detect spatial and temporal
violations. SoftBound [21] records base and bound information for
every pointer as disjoint metadata to enforce completely spatial
memory safety for C programs. CETS [22] uses a key and lock
address with each pointer in a disjoint metadata space and checks
pointer dereferences to enforce temporal safety for C programs.

All of these solutions will slightly change the memory layout
of target programs as a result of the instrumentation and thus are
not suitable for exploit generation. By contrast, Revery utilizes a
shadow memory to track the tags of pointers and the status of heap
objects non-intrusively.

8 DISCUSSION

AEG is an open challenge. Revery only moves one step towards
this goal. It has many challenges, including but not limited to:



e Advanced Defenses. More and more defenses are proposed
and deployed in practice, in order to stop popular attacks. These
defenses not only raise the bar for human attackers, but also
hinder automated solutions. For example, Revery could not by-
pass ASLR because it lacks the ability of information disclosure.
It could trigger exploitable states for 5 of 19 programs, but not
able to generate working defenses, because of the sanity checks
deployed in heap allocators.

e Heap Layout Massaging. A large number of heap-based vul-
nerabilities could only be exploited in specific memory layouts.
Due to the complexity of memory allocators and the program
behavior, it is very challenging to generate inputs to build mem-
ory layouts as expected.

e Combination of Multiple Vulnerabilities. In practice, a suc-
cessful exploit usually require multiple vulnerabilities. We have
to assemble different vulnerabilities and utilize their corruption
effects to craft a final exploit.

e Program Comprehension and Analysis. To successfully ex-
ploit a program, it is necessary to understand the program
behavior, e.g., what input will cause what output, and make dy-
namic decisions at runtime. In addition, few program analysis
solutions could extract such information. As aforementioned,
the widely used symbolic execution has many limitations too.

9 CONCLUSION

Existing AEG solutions are facing the challenges from exploit
derivability issue, symbolic execution bottleneck and heap-based
vulnerabilities. We proposed a solution Revery able to search ex-
ploitable states in diverging paths rather than crashing path, with
a novel layout-oriented fuzzing and a control-flow stitching solu-
tion. It could trigger both vulnerabilities and exploitable states for
a big portion of vulnerable applications. It could also successfully
generate working exploits for certain vulnerabilities. It has moved
one step towards practical AEG. But there is a long way to go.
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